Detecting galactic supernova with NOvA Far Detector

Andrey Sheshukov JINR Dubna

AYSS 2016

Supernova neutrino signal

- Core collapse SN explosion emits ~1058 neutrinos
- They carry ~99% of explosion energy

Motivation

- SN physics probe
 - Neutrinos carry information from SN center
 - Many different models exist
- Neutrino properties
 - Signal shape and spectrum depends on neutrino masses, mixing angles, sterile neutrinos etc.

arXiv:1508.00785 [astro-ph.HE]

 Early SN warning for astronomers and other neutrino experiments

Supernova Early Warning System (SNEWS)

Challenges

- Need huge detectors
 - Collaborate with other experiments → global network
- Previously observed only once: SN1987a
- Galactic supernovas are rare: ~3 per century

arXiv:1306.0559v1 [astro-ph.HE] We need to be ready!

NOvA Data-Driven trigger system

- All the data is sliced in 5ms blocks: *millislices*.
- Millislices are processed in parallel on *BufferNodes* in *DDT Filter processes*
- Filter process checks milliblock for:
 - · Beam neutrino interactions
 - High cosmic ray activity
 - Monopoles, etc
- If something is found,
 trigger signal is sent,
 telling buffers to save data
 to disk for offline analysis

SuperNova neutrino detection in NOvA FarDet

SN neutrinos interacting in FD:

- nu_x: NC on nucleus
- anu_e:QEL on nucleus (IBD)
- nu_e: elastic on electrons
- 1) NOvA FD is on the surface
- NOvA detectors are designed for measuring ~2 GeV neutrino interactions,

but SN neutrinos are ~10 MeV

- A dedicated background rejection procedure is required
- NOvA DDT system works with milliblocks: 5ms data chunks

But neutrino signal is extended in time for ~1s

 We need to analyze the time structure continuously on the separate node

Analysis scheme

- Neutrinos interact in FD
- Find SN neutrino interactions per milliblock (5ms)
 - Selection of neutrino interactions to reduce BG
 - Reject muon track parts
 - ADC cut
 - Noise hits rejection
 - Count number of interaction candidates
- Monitor interactions rate vs. time
 - Filter the time sequence, to enhance signal shape
 - If we see a signal shape above BG level:
 - send trigger signal
- Save the data for triggered time range

Analysis scheme

Neutrinos interact in FD

DAQ

- Find SN neutrino interactions per milliblock (5ms)
 - Selection of neutrino interactions to reduce BG
 - Reject muon track parts
 - ADC cut
 - Noise hits rejection
 - Count number of interaction candidates

DDT

- Monitor interactions rate vs. time
 - Filter the time sequence, to enhance signal shape
 - If we see a signal shape above BG level:
 - send trigger signal NovaGlobalTrigger
- Save the data for triggered time range DataLogger

Signal vs. Background selection

Signal model for BG rejection:

- Garching SN flux model
- distance=7.5 kpc (galactic center)
- Only IBD positrons are considered
- Positrons are input for geant detector simulation

Signal candidates are uncorrelated in space

Background sources are numerous:

- Muon induced background
 - atmospheric muons
 - delta, michel electrons
- Random hits coincidence (in time in space)
 - Mostly noisy channels
- Other
 - Neutrons, neutrinos

Background should be uncorrelated in time

We don't need a precise BG model: we can use data readout Have to be careful with the signal model though...

Inspecting BG

Continuous readout data: all candidates position

Mostly parts of muon tracks.

Reject hits, associated with reconstructed tracks

Interaction candidate:

- Several hits in X and Y
- Close in time and Z plane
- Hits in both views (XZ and YZ) are required

BG suppression: ADC cut

Color: ADC cut

ADC (signal amplitude):

adc<120 - random coincedence clusters

adc>600 - High ionizing particles

120<adc<600 - SIGNAL

This is rough cut!

ADC for the same energy depends on the distance to readout

BG suppression: noisy channels

Color: channel noise level

Noisy channels cut:

- Lines along X and Y are caused by random coincidence with high-noise channels.
- To remove it we use the map of channel activity for last 250ms

BG suppression: result

Color: timestamp

Some tracks are still visible

Apparently, these tracks were not reconstructed

We need to study and improve tracking efficiency

Uncorrelated background

- Random hits coincidence?
 - Slicing algorithm improvement
 - Better ADC cut is needed
- Michel electrons from muons decay?

MichelE filter is needed

Background rejection efficiency

the cut efficiency for signal sample

Recheck with new simulation

(100.0%): Cut="nx>=1 && ny>=1"

(86.4%): Cut="(nx>=1 && nv>=1)&&(adc>120 && adc<600)"

(86.4%): Cut="((nx>=1 && ny>=1)&&(adc>120 && adc<600))&&(Noise<300)"

Summary

Conclusions

- Detecting neutrino signal from a galactic supernova provides many physical opportunities
- NOvA far detector can be used for galactic SN detection
- A Supernova trigger system has been developed and deployed on NOvA Far Detector buffer nodes
- Background rejection study is in progress there are many ways to improve s/n ratio

Next steps

- Improve track reconstruction
- Find and remove hits from Michel electrons
- Test the SN signal simulation with different models
- Use machine learning for signal selection
- Using Near Detector can increase sensitivity